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Abstract

A method to estimate the efficiency of a stack of several identical cells is described on the basis of the
electrochemical behavior of a single cell. Efficiency of fuel cell stacks is defined by means of a combination of semi-
empirical models of polarization curves and dimensionless variables such as reaction extent and utilization. The
connection of flows among the cells is basically divided in two extreme cases and one intermediate case. Higher
efficiencies are obtained when the same main flow (both anodic and cathodic) passes consecutively through the stack
cells (Chain Flow), because it is favored thermodynamically. It is less favored when the main flow is strictly divided
among all the cells (Separate Flow). In the intermediate case, the main flow is divided among all the stack cells and
all the outlets are collected in one flow. The latter can spontaneously evolve to the more thermodynamically stable
behavior of Chain Flow.

List of the principal symbols

_nqj Flow rate of the reagent j in the q-th cell (mol s)1)

_nql Flow rate of the limiting reagent l

in the q-th cell ( mol s)1)

uqj Utilization of the reagent j in the q-th cell

uq Utilization of the limiting reagent l in the q-th cell
_Hp Enthalpy flow rate of the product p (J mol)1)
_Hr Enthalpy flow rate of the reagent r (J mol)1)
_Wel;irr Irreversible electrical power of the fuel

cell stack (J s)1)

i Current density (A cm)2)

Aq Active area of the q)th cell (cm2)

Uq Potential of the q)th cell (V)

U1q Potential part depending on reaction extent

of the q-th cell (V)

U2q Potential part depending on partial pressures

of the q-th cell (V)

pqj Partial pressure of the reagent j in the q-th cell

(kPa)

ps qj Surface partial pressure of the reagent j in the

q-th cell (kPa)

usn Stack utilization

n Total number of cells of the stack

c Number of moles of electrons exchanged

(Equation 7) (mol)

F Faraday constant (96501 C mol)1)

U Stack average potential (V)

kj Constant for reagent j in Equation 12.5 and 12.6

U(0) Single cell potential at a reaction extent of 0 (V)

DH� Standard enthalpy of fuel cell reaction. For water

formation: DH�=)285.5 k J mol)1

DG� Standard Gibbs free energy of fuel cell reaction.

For water formation: DG� = )237.2 k J mol)1

UH Potential determined using enthalpy:UH=DH/cF.

For water formation in standard conditions:UH=

1.48 V

Greek letters

g Efficiency of fuel cells
_nq Reaction rate in the q-th cell (s)1)

nq Reaction extent of the q-th cell

nsn Stack reaction extent

mj Stoichiometric coefficient of the reagent j (mol)

ml Stoichiometric coefficient of the limiting reagent

l (mol)

aq
lj Time interval difference between the limiting

reagent l and the reagent j (s)

a1, a2, a3, a4, a6 Parameters of Equations 12–12.4 and 13 depend-

ing on temperature, on flow rates and on pressures

of the first cell (V)

a5 Parameter of the exponential term in

Equations 12–12.3 and 13
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1. Introduction

The efficiency of the water formation reaction is very
easily defined in standard conditions [1]:

g ¼
DG0

H2O

DH0
H2O

¼ �237:2 kJmol�1

�285:5 kJmol�1
¼ 0:83: ð1Þ

This efficiency is the Gibbs free energy efficiency of the
reaction. It does not deal with kinetic aspects which can
lead the reaction far from equilibrium; moreover, both
reversible processes and transformations are constantly
taken into account.
An efficiency of thermal machines, based on the

Carnot cycle, is defined in the following way [1]:

g ¼ ðDQin � DQoutÞrev
ðDQinÞrev

¼ 1� T1

T2
; ð2Þ

ðDQinÞrev being the reversible heat coming into the
system and the difference ðDQin � DQoutÞrev the revers-
ible work delivered by the system; T2 is the highest
temperature of the cycle and T1 the lowest temperature.
Ayoub Kazim [2] gives a general definition for fuel cell

efficiency, starting from flows of thermodynamic quan-
tities [3] as indicated in the following equations:

g ¼ Electrical Output

ðX ÞR � ðX ÞP
; ð3Þ

g ¼
_Wel

ð _Xair;R þ _XH2;RÞ � ð _Xair;P þ _XH2O;PÞ
; ð4Þ

where _Xair;R and _XH2;R are the rates of some specified
thermodynamic quantities (e.g. enthalpy or exergy) of
the reagents (oxygen in air and hydrogen) , and on the
other hand, _Xair;P; _XH2O;P (water and products like water
in air) are the thermodynamic quantity rates of prod-
ucts, and _Wel is the electrical power output. This
definition is based on the operating parameters of fuel
cells, where time dependence and flow rates dominate
performance. It includes physical and chemical thermo-
dynamic forces as well. These efficiency definitions
reflect the conditions of reagents and products in fuel
cell operations, and lead to efficiencies with realistic
values: in the range 0.3–0.4 for a 10 kW fuel cell stack,
using also ideal gas equations for both physical exergies
and entropies of mixed products [2, 4].
Its emphasis on time dependent or steady variables

(flow rates of both reagents and products, flow rates of
exergies or enthalpies and power) represents an impor-
tant step in the efficiency statements of fuel cell systems.
Some of the classic methods used to calculate fuel cell

efficiency are the so-called: Electrochemical, Faradaic
and Practical efficiencies [5], which, combined in a
steady operational way, would give [6]:

g ¼
_Wel;irr

ð _HP � _HRÞrev
; ð5Þ

where _HP and _HR are respectively the reversible enthalpy
flow rates of products and reagents (Kazim uses the
opposite convention with respect to the sign of thermo-
dynamic functions and uses exergies instead of enthal-
pies), while _Wel;irr is the irreversible power output of the
fuel cell, which usually will be irreversible. Working with
enthalpy connects directly to thermal energy and heat,
which allows a direct comparison with the classical
Carnot efficiency.
The efficiency of a single cell can be different from

that of a whole stack, depending on reagent utilization.
Irreversible processes are involved in most cases; e.g.
Equation 2 deals only with reversible processes, and
Equation 5 is often a hybrid of an irreversible numerator
and a reversible denominator. The main objective is to
present a way to predict and model fuel cell stack
efficiencies, starting from single cells and ending with
large stacks of several identical cells up to so large
stacks, these are considered infinite. The efficiency
definition of Equation 5 is used, which combines some
operative aspects, evidenced by Kazim [2], and other
definitions [4]. The focus of the discussion is on the
linkage between a single cell and a stack, made of a
series of cells identical to the initial single cell. Only the
case of steady conditions is considered, implying that all
rates are constant and leading actually to time indepen-
dent equations. A large segment of our results is
semi-quantitative predictions, due to approximations,
such as, neglecting friction of gases in the flow fields.
However, the conclusions are of general validity, for
example, the efficiency trend of Proton Exchange
Membrane (PEM) fuel cell stacks with different kinds
of flow. This work represents the first part in a series of
two works. The first part focuses on general definitions
and model development. Conclusions regarding the
effects of both kinds of flow, and the number of cells,
on the efficiency of fuel cell stacks are obtained. The
second part focuses mainly on the comparison between
model predictions and experimental results.

2. Methodology and models

Our starting point is the definition of two basic types of
flow. In the first case, hydrogen and air (or oxygen) pass
through each cell consecutively, generating a chain or
serial connection of flows (Chain Flow stack, case (a) in
Figure 1); such a flow provides the proper steps useful
for thermodynamics. In the second case, feeding of each
cell comes separately from the same main stream
(Separate Flow stack, case (b) in Figure 1) and will be
approached using thermodynamic conclusions and
results from our first case. The Separate Flow case will
be discussed in Subsection 4.3. This section will deal
only with Chain Flow.
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The dimensionless variable utilization u will be the
fundamental tool used to forecast cell potential and
correlate it with flow rates in the q-th cell:

uqj ¼
_nqj � _nqþ1;j

_nqj
: ð6Þ

In Equation 6, j is the reagent j, e.g. hydrogen or oxygen
in our case, nqj and _nqþ1;j are the inlet molar flow rate
and the outlet flow rate of reagent j for the q-th cell of a
stack, respectively.
Utilization has a direct connection with current

density i through the following equation:

uqj ¼
iAq

ðc=mjÞ _nqjF
; ð7Þ

where F is the Faraday constant, Aq the active area
of the q-th cell, c the number of exchanged electrons
per mol of product and mj the stoichiometric
coefficient of the reagent j [7]. Polarization curves
of single cells show the potential variation with
current density. The usual variable i is changed to
the dimensionless variable utilization u. Utilization
can be related to the reaction extent by means of
the reaction rate

_nq ¼ �
_nqþ1;j � _nqj

mj
¼ uqj

_nqj

mj

� �
: ð8Þ

The relationship between reaction rate and current
density is obtained combining Equation 8 with Equa-
tion 7:

_n ¼ iAq

cF
: ð9Þ

If the active area Aq is the same for each cell, then the
reaction rate, _n, will also be the same for each cell,
(Equation 9).
The reaction extent can be expressed in a useful form,

depending on the q-th cell and equal to the utilization of
the limiting reagent l of the q-th cell, in the following
way:

nq ¼ _n
mj

_nqj
þ aq

lj

 !
¼ uql; ð10Þ

where the term aqjl corresponds to the difference between
the time intervals mj= _nq;j of the limiting reagent l and the
considered reagent j:

ml

_nql
� mj

_nqj
¼ aq

lj: ð11Þ

The appropriate thermodynamic variable should be
better chosen as the reaction extent nq, i.e. the utilization
of the limiting reagent.
The cell potential, Uq, depends on the current density

and, experimentally, this dependence is reported in the
polarization curves [8]. There are several semi-empirical
models describing polarization curves; one of the most
common is that proposed by Kim et al. [9] and Springer
et al. [10], where the reaction extent, instead of current
density, and partial pressures are introduced as the
independent variables [7, 11]:

Uqðnq; pqj; T Þ ¼ U1qðnq; T Þ þ U2qðpqj; T Þ; ð12:1Þ

Uqðnq; pqj; T Þ ¼ a1 � a2nq � a3 ln nq � a4 exp a5nq

þ a6 ln
Y

j

pqj=p1j
� �mj ; ð12:2Þ

U1qðnq; T Þ ¼ a1 � a2nq � a3 ln nq � a4 exp a5nq;

ð12:3Þ

U2qðpqj; T Þ ¼ a6 ln
Y

j

pqj=p1j
� �mj ; ð12:4Þ

ps
qj ¼ kjpqj; ð12:5Þ

ps
1j ¼ kjp1j; ð12:6Þ

Fig. 1. (a) (Chain feeding): the same stream passes initially in the first

cell and then in the second, and so on; (b) (Separate feeding): the main

gas stream is divided into secondary streams each one feeding a

different cell. Each cell is represented by a box and each stream by an

arrow.
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In Equation 12.1 the cell potential Uq is divided into two
parts: U1q (Equation 12.3) depends on the cell reaction
extent nq and U2q (Equation 12.4) depends on cell partial
pressures pqj. Equation 12.1 takes the form of Equation
12.2 when Equations 12.5–12.6 are satisfied simulta-
neously. Equations 12.5 and 12.6 say that the pressure
of the reagent j on the electrode surface ps

qj is propor-
tional to the nominal pressure. The same behavior is
also guessed to be valid for the reference surface
pressure of the reagent j, p s

1j, so that it is unnecessary
to know the surface pressure with such definitions
(Equations 12.5–12.6).
The coefficients kj of Equations 12.5 and 12.6 disap-

pear in Equations 12.2 and 12.4, because they are
present in both the numerator and the denominator of
the logarithmic term. The introduction of reaction
extent in Equation 12.2, instead of the common current
density is based, on the fact that reaction extent is
proportional to utilization (Equation 10), which is
proportional in turn to current density (Equation 7).
Reaction extent has the advantage of linking directly to
thermodynamics, and therefore to the grade of irrevers-
ibility of the process.
The reference polarization curve, obtained from one

single cell, is:

Uðn; p1j; T Þ ¼ a1 � a2n� a3 ln n� a4 exp a5n; ð13Þ

where the ai parameters (Equations 12.2–13) depend on
T and p1j, Equation 13 is essentially U1q of Equation
12.2.

3. The reversible stack

The equilibrium conditions imply that _n! 0 so that for
each cell _n! 0, according to Equation 10. Electro-
chemical stacks are discussed in which the outlet of one
cell is the inlet of the next cell, which will be called a
Chain Flow stack, as indicated in case (a) of Figure 1.
The utilization of each cell is related directly to the
utilization of the previous one.
Three identical serial cells are considered, where the

flow rates of the limiting reagent for each cell are:
_n1l ¼ a; _n2l ¼ b; _n3l ¼ c; the utilization definitions of
every cell (u1l, u2l, u3l) and that of the whole stack (us3)
are reported here:

u1l ¼
a� b

a
¼ 1� b

a
; ð14:1Þ

u2l ¼
b� c

b
¼ 1� c

b
; ð14:2Þ

u3l ¼
c� d

c
¼ 1� d

c
; ð14:3Þ

us3 ¼
a� d

a
¼ a� bð Þ þ ðb� cÞ þ ðc� dÞ

a

¼ au1l þ bu2l þ cu3l

a
:

ð14:4Þ

Starting from Equations 14.1–14.4 we can easily
obtain the following equation:

us3 ¼ u1l þ ð1� u1lÞu2l þ ð1� u1lÞð1� u2lÞu3l; ð15Þ

for a stack of n cells, Equation 15 turns in:

usn ¼ u1l þ
Xn

q¼2
uql

Yq�1
p¼1

1� upl
� �" #

¼ nsn; ð16Þ

where nsn is the stack reaction extent and coincides with
usn which is defined on the limiting reagent l in order to
be coherent with the definition of Equation 10.
If the reversible conditions are satisfied:

i! 0; _n! 0 and n! 0, it follows that uql ! u! 0,
and the series, expressed in Equation 16, is reduced to
the result of Equation 17.3 in the following way for an
infinite stack:

x ¼ 1� u; ð17:1Þ

X1
s¼0

xs ¼ 1

1� x
; x < 1 ; ð17:2Þ

us1 ¼ lim
u!0þ

u
X1
s¼0

1� uð Þs
" #

¼ lim
x!1�

1� xð Þ
X1
s¼0

xs

" #

¼ lim
x!1�

1� x
1� x

� �
¼ 1; ð17:3Þ

where the changes of variables were done: 1)u = x and
s = q – 1 and used the convergence of the series of
Equation 17.2. The important result is that only an
infinite stack in such reversible conditions can achieve a
stack utilization us1 of 1 (Equation 17.3).
Moreover, we can intuitively assert that the stack

utilization must be:

usn ¼ n
iA

ðc=mlÞ _ni
1lF
¼ nsn; ð18:1Þ

i.e. the stack utilization usn is n-fold the utilization of one
cell, because in every cell the same amount of reagent is
utilized to keep the same current in the stack.
Using Equations 5 and 18.1, an efficiency definition is

obtained for a steady state, depending on the whole
stack reaction extent nsn:
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g ¼
_Wel

_HP � _HR

¼ lim
n!1

iA
1
ml

_nin
1l

P
mphp �

P
mrhr

� �

¼ lim
n!1

usn
1
n

Pn
q¼1

UqF c=mlð Þ

1
ml

P
mphp �

P
mrhr

� �

¼ lim
n!1

usnUF c=mlð Þ
1
ml

P
mphp �

P
mrhr

� � ¼ lim
n!1

nsncUFP
mphp �

P
mrhr

¼ lim
n!1

cUF nsn

DH
; ð18:2Þ

where
Pn
q¼1

Uq is the total stack potential, U is the average

stack potential, nsn is the stack reaction extent identical to
usn, hp and hr are the molar enthalpy of products p and the
molar enthalpy of reagents r, respectively. For a reversible
infinite stack this equation takes the following form,
which considers the result obtained in Equation 17.3:

gs1 ¼ lim
n!1

cUF nsn

DH
¼

cUðnq ¼ 0ÞF � 1
DH

¼ Uð0Þ
UH
¼ DG

DH
;

ð19Þ

where U(0) is the potential of one cell at reaction extent
nq = 0 and it coincides with the average potential U in
conditions of reversibility. Equation 19 resembles Equa-
tion 1, which is the limit case, corresponding to an
Infinite Reversible Fuel Cell Stack in standard condi-
tions. It is noteworthy that, although we start with
operative conditions, steady state leads to time inde-
pendent equations like Equations 18.2 and 19.

4. The irreversible stack

4.1. Model definitions for Chain Flow

The irreversible stack efficiency has the same definition
as in Equation 18.2, without the limit operator. How-
ever, in this case, the numerator is an irreversible power

and �U must be found through models. This implies the
need to determine the reaction extent, the flow rates and
the partial pressures of each cell previously, hence the
potential of each cell and the average potential in a
Chain Flow stack.
The first step consists of noting that there is a series of

equalities between the product of the utilization and the
inlet flow rate of each cell:

u1j _n1j ¼ u2j _n2j ¼ :: ¼ uqj _nqj

¼ :: ¼ unj _nnj ¼
mjiAq

cF
¼ mj

_n
ð20Þ

from which is obtained:

uqj

uqþ1;j
¼ _nqþ1;j

_nqj
ð21Þ

and from the definition of utilization of Equation 6 it is
shown that:

uqj ¼ 1� _nqþ1;j
_nqj

ð22Þ

combining Equations 21 and 22, gives

uqþ1;j ¼
uqj

1� uqj
: ð23Þ

Introducing u1j in the Equation 23 for u2j and so on
iteratively, the following general equation is achieved:

uqþ1;j ¼
u1j

1� qu1j
; qu1j<1 ð24Þ

and since the products of flow rates with the corre-
sponding utilizations are constant (Equation 20), the
flow rate can be expressed as:

Fig. 2. Utilization (solid line), flow rate and pressure trends (dotted

line) calculated by Equations 24, 25 and 26. The initial utilization

u1j ¼ 0.09.

Fig. 3. Polarization curve, temperature 298 K, pressure of gases

100 kPa, oxygen flow rate 9.37 · 10)5 mol-O2 s
)1 and hydrogen flow

rate 1.12 · 10)4 mol-H2 s
)1.
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_nqþ1;j ¼ _n1j 1� qu1j
� �

; qu1j � 1: ð25Þ

Flow rates and cell utilizations are reported in
Figure 2, for u1j = 0.09 and a 10 cell stack, where the
hyperbolic increment of utilization and the linear
decrement of flow rates are evident.
Partial pressures should follow a similar behavior to

the molar flow rates (Figure 2), for the ideal gas state
equation, considering that the stack volume and tem-
perature are constant and neglecting friction of gases in
the flow fields:

pqþ1;j ¼ p1j 1� qu1j
� �

; qu1j � 1: ð26Þ

The global utilization of a stack would take the
following form, combining Equations 16 and 24:

usn ¼ u1l þ
u1l

1� u1l
1� u1lð Þ þ � � �

¼ nu1l ¼
inA

ðc=mlÞ _n1lF
¼ nsn:

ð27Þ

The stack utilization is n-fold utilization of the first cell,
for a stack of identical cells, as asserted in Section 3 for the
reversible case. It is noteworthy that the definition of usn
= nÆ u1l is useless to solve the reversible case, because we
obtain the indetermination us¥ = ¥Æ0; nor can we solve it
supposing that usn = 1 and so obtaining n if u1l = 0,
because usn is what we are looking for in an infinite stack.
The efficiency definition, seen in Section 3, is used

without the limit case [12]:

g ¼
_Wel

_HP � _HR

¼
iA
Pn
q¼1

Uq

1
ml

_n1l

P
mphp �

P
mrhr

� �

¼
c 1

n

Pn
q¼1

Uq

 !
Fusn

P
mphp �

P
mrhr
¼ cUF nsn

DH
;

ð28:1Þ

where we have carried out a substitution, considering
the following equality obtained from Equation 27:

iA
1
ml

_n1l

¼ cFusn

n
: ð28:2Þ

It is necessary to state that in this model we are
supposing that temperature is uniform and all transfor-
mations are carried out at a constant temperature, as
Equations 12.5, 12.6, 25 and 26 require. The assumption
of constant temperature is valid if a cooling system acts
as a thermostat for a stack working for a long period. It
is also be valid for short times of operation, during
which there is not enough time to create relevant
temperature gradients along the stack, but the depen-
dence of the coefficients ai (Equations 12.2, 12.3 and 13)
on temperature can be made explicit whether needed or
not.
It is necessary to start from a polarization curve, and

the model proposed within Equations 12.1–13, to
manage Equation 28.1. The polarization curve reported

Fig. 4. Cells potentials of a stack of 10 cells, solid curve: u1l = 0.09,

dotted curve u1l = 0.05.

Fig. 5. Cells potentials for parallel flows (dotted line) and counter flow

(solid line); u1l = 0.09 for both cases.

Fig. 6. Cells potentials for parallel flows (dotted line) and counter flow

(solid line); u1l = 0.05 for both cases.
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in Figure 3 was used in order to do various calculations
and predictions. This curve was obtained from a
SZW (Zentrum für Sonnenenergie-und-Wasserstoff-
Forschung) Protonic Exchange Membrane (PEM) single
fuel cell, with active area A of 100 cm2, tested by means
of the FCATS screener test station by Hydrogenics Co.
at the University of Applied Sciences of Stralsund,
Germany. The test conditions were: cell temperature of
298 K, air flow rate of 600 ml min)1 (9.37 · 10)5 mol-
O2 s

)1), hydrogen flow rate 150 ml min)1

(1.12 · 10)4 mol-H2 s
)1), where the limiting reagent

was hydrogen, the pressure of both gases was 100 kPa,
and the humidity 35%. The equation describing this
polarization curve is:

Uðn; 100 kPa; 298 KÞ ¼ 0:826� 0:378n� 0:0176 ln n

� 1:0077� 10�5 expð10:74nÞ:
ð29Þ

This polarization curve is a useful tool to do various
calculations, for instance, other curves can be used
without affecting of the general results. Applying
Equation 23, where uql is taken as the reaction extent
nq (Equation 10), and Equations 26 and 29 in Equations
12.1–12.4, the potential of each cell can be forecast. In
Figure 4, the cell potentials of a stack of 10 cells in two
different situations are shown. In the former, the first
cell reaction extent is of 0.09 and in the latter 0.05. The
temperature is considered constant at 298 K, for the
steady state conditions, and uniform in the whole stack.
Water drag is also supposed to be efficient and friction
effects of gaseous reagents are neglected. The term a6 of
Equation 12.2 is taken as 0.013 V, corresponding to the
value of RT/cF for c ¼ 2. The potential decay is faster in
the case where there is higher first cell utilization
(u1l ¼ 0.09) (Figure 4).
The assumption of uniform temperature is important

because the effect of counter flow of reagents, which
could be confused with the effect of temperature, can be
clearly observed.
Another important case to be considered is one in

which flows are in opposite directions. In such a
situation, the pressure of the gas in counter flow can
be so expressed:

pq�1; j ¼ pnjqunj ð30Þ

In Equation 30, unj is the lowest utilization and pnj the
highest pressure for reagent j, which is in counter flow.
The effect of counter flow is very slight when the first cell
utilization u1l is high (0.09) and its effects are manifested
overall in an initial cell potential decay (Figure 5). With
lower utilizations of the first cell (u1l = 0.05 in the
example) the effect of counter flow is not only an initial
potential decay, but also the presence of a potential
maximum along the cell stack. In our example, the
maximum is in the third cell (Figure 6); nevertheless,
counter flow cell potentials are always lower than those
of parallel flows (Figures 5 and 6).

4.2. Efficiency determination for Chain Flow case

The average potential U is calculated using the equa-
tion:

UðnÞ ¼ 1

n

Xn

q¼1
Uðnq; T ; pqjÞ: ð31Þ

Considering a fixed and uniform temperature along the
stack, a fixed initial gas pressure p1j and fixed n1, the
only real variable is the number of cells n. The average
potential UðnÞ and stack utilization usn are shown in
Figure 7, for the case of parallel flow, and for a
maximum of 10 cells per stack and initial first cell
utilization u1l = 0.09. The average potential decreases
slightly with an increase in the number of cells. For this
reason, the efficiency doesn’t grow linearly but has a

Fig. 7. Average stack potential �U and stack utilization (usn) with

increasing total cells number n (u1l ¼ 0.09).

Fig. 8. Stack efficiency (solid line) compared with linear behavior

(dotted line), us10 ¼ 0.9.
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slight deflection from linearity, which is more accentu-
ated when stack utilization approaches 1 (Figure 8). The
achieved efficiency, calculated by Equation 28, is 0.47
for a 10 cell stack and a very high stack utilization of 0.9
(UH = 1.48 V, 4H = 4H� = )285.5 kJ).

4.3. Efficiency determination for Separate Flow case

In the Separate Flow case, the main flow rate _nj is
divided into n equal flow rates:

_nqj ¼
_nj

n
: ð32Þ

The stack utilization for the limiting reagent coincides
with the cell utilization:

usn ¼ nsn ¼
_nin

l � _nout
l

_nin
l

¼
nð _nin

ql � _nout
ql Þ

n _nin
ql

¼ uql ¼ ul ¼ n:

ð33Þ

The cell utilization can also be written in the following
form:

ul ¼
iA

c
ml

_nl
n

� �
F
¼ inA

c
ml

� �
_nlF

; ð34Þ

implying that at a given current density i and _nl, the cell
utilization is proportional to the number of cells n which
composes the stack.
The potential of each cell must be also the same:

UðqÞ ¼ U : ð35Þ

The efficiency is thus defined, taking into account
Equations 34 and 35:

gs ¼ gq ¼
cFUn
DH

ð36Þ

indicating that the stack efficiency gs is equal to the
cell efficiency gq. The efficiencies of stacks, whose
behavior strictly follows the Separate Flow conditions
as established, do not depend on the number of cells,
but only on utilization. Using the same polarization
curve and operative conditions described in Subsection
4.1, the efficiency manifests the behavior shown in
Figure 9, where a maximum efficiency of approxi-
mately 0.26 is present, with a reaction extent of about
0.75. A comparison between Chain Flow and Separate
Flow stack efficiencies is shown in Figure 10, using
the common abscissa variable i.e. the reaction extent
nsn. Only at low utilization is the behavior of
efficiencies of both cases quite similar, and then it
diverges (Figure 10). Efficiency of Chain Flow stacks
has a slight decline at high stack utilization; however,
since Separate Flow stacks follow the efficiency
behavior of a single cell, their efficiency decay is very
pronounced at high utilization.

Fig. 9. Stack or cell efficiency of Separate Flow case.

Fig. 10. Comparison of efficiencies of both Chain Flow and Separate

Flow stacks. Note that 1 cell corresponds to us1 = 0.09 and 10 cells

stack corresponds to us10 ¼ 0.9.

Fig. 11. Fuel cells stack efficiencies with increasing total cells’ number

(stack utilization usn = 0.9). Dotted straight line: efficiency of an

infinite stack.
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4.4. Efficiency variation and number of cells

By extrapolating the linear behavior of efficiency at low
utilizations, as shown in Figure 8 for the Chain Flow
case, the efficiency of 0.56 for 10 cells stack is obtained,
with stack utilization us10 = 0.9, i.e. it is overestimated.
Nevertheless, by keeping this linear behavior with the
derivative of the straight line coinciding to U1l(n1)
(Equation 12.3), it can be estimated how efficiency varies
incrementing total number of cells of the stack n (every
stack has utilization of 0.9 and first cell utilization u1l is
0.9/n). In Figure 11, the efficiency variation with n can
be observed; in this representation, efficiencies at high n
are emphasized, because at low n there is a discrepancy,
as stated above. Efficiency first increases quickly with n,
and then slowly, this suggests that at high efficiencies
more and more cells are needed to approach the
reversible limit. The efficiency limit (shown with the
dashed line and corresponding to 0.645) is the value
obtained from experiments in the reversible case, i.e. it
has been calculated by the potential of a single cell
without current, U(0) = 0.955 V (in the conditions
described in Section 4.1) and by Equation 19.

5. Discussion

This work deals with the definition, calculations and
predictions of efficiencies of fuel cells. Its aim is to
forecast, or estimate, efficiencies of stacks from the
characteristics of single cells. A polarization curve,
obtained in defined conditions, can be represented by
means of phenomenological models (Equations 12.1–
12.6). This curve can be reported as a function of the
dimensionless variable called utilization. Moreover,
reaction extent, another dimensionless variable, can be
defined both for each cell (Equation 10) and for the
whole stack (Equation 27), assimilating it with the
utilization of the limiting reagent. The appropriate
variable would be the reaction extent (Equation 10),
because it refers directly to the reversibility of the
process and commonly used in thermodynamics. These
terms are used with some latitude; when speaking of the
utilization of the limiting reagent, according to the
stated definitions, the two terms coincide. In the model
for the polarization curve (Equations 12.1–12.6 and 13),
as described by the dimensionless variable reaction
extent, the grade of irreversibility of the process is
considered, since reaction extent increases, the irrevers-
ibility does also and the potential consequently decays.
The coefficients a2, a3, a4, a5, a6 of this model include
several effects of the irreversible phenomena occurring
in the fuel cell: activation, ohmic and concentration
polarizations, and humidity effects. Considering that
each cell of a stack has its own reaction extent, the
model can be used to predict cell potentials. In the Chain
Flow stack, the reversible and the irreversible cases are
distinguished. In the reversible case, only an infinite
stack can satisfy the requirement of an infinite series of

equilibrium states through the entire process. In this
case, the reaction rate _n (Equation 9) tends to 0 and the
efficiency is reduced to the ratio of the potential of a
single cell without load, with the potential extrapolated
from enthalpy UH (Equation 19). In the reversible case,
Chain Flow and Separate Flow tend to coincide. This is
true because each cell utilization tends to be the same uql
! u, in the reversible case, which is equivalent to that
expressed in Equation 33 for the Separate Flow.
In the irreversible case, the cell potential decays as the

number q of the cell increases in the series, as shown in
Figure 4. This decay is more accentuated in the case of
high stack utilization, due mainly to hyperbolic increase
of cell utilization (Figure 2). Moving from the first cell,
the process is more irreversible and the several overpo-
tentials become larger; consequently the potential
decays. The flows of the two reagents can be carried
out in parallel, or in opposite directions. The effect of
counter flow is more evident with low utilizations, where
it generates the appearance of a potential maximum
along the stack; in any case, counter flow causes a
lowering of the potential of the initial cells (Figures 5

Fig. 12. Flow path of a stack where a main feeding flow is divided

among all the cells and the outlet flows are collected in one stream. AB

is the case between cases A and B, described in Figure 1. Each cell is

represented by a box and each flow path by an arrow.

Fig. 13. Gibbs free energy DG variation with reaction extent nsn for

Chain (n varies from 1 to 10 and u1l ¼ 0.09) and Separate Flow stacks.

The bold arrow indicates a possible transition from one dominant

behavior to the other with lower Gibbs free energy.
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and 6). The introduction of a temperature gradient into
the model would not allow the identification of the effect
of counter flow on potential.
The efficiency has been determined for an initial cell

utilization u1l ¼ 0.09 and for stacks up to a maximum of
10 cells. Calculations show that a larger stack is more
efficient; however, the increment of efficiency is not
linear, because the average potential of the stack
declines, with increasing the total number of cells n
(Figures 7 and 8).
In the Separate Flow stacks, the problem is easier,

because the reaction extent of each cell is the same, and
is equal to the stack reaction extent; for this reason, the
efficiency of the stack is a function only of reaction
extent n. The efficiency shows a maximum, in our case g
» 0.26 at n 0.75 (Figure 9), a significantly low efficiency,
compared with the Chain Flow case. A direct compar-
ison of Chain and Separate cases, using the common
variable of reaction extent, reveals that, at low reaction
extents, the two cases are very similar and then they
diverge. Finally, efficiency decline is accentuated in the
Separate case (Figure 10), because all cells have
the same low potential with high utilizations, while in
the Chain case only, the ending cells have low potentials.
In this case, the irreversibility of the process grows along
the stack.
The question is how efficiency can be improved,

keeping the reaction extent of the stack for the Chain
Flow case constant; for example, at nsn = 0.9 and
changing the stack total number of cells n. A tentative
answer is given in Figure 11, although efficiency is
overestimated at low n, it rises with n, but its increment
decreases with s of n increment. In brief, the increment
of g, with respect to that of n is always positive, but
tends to vanish:

dg
dn

� �
n

> 0 ð37Þ

lim
n!1

dg
dn

� �
n

¼ 0 ð38Þ

Equations 37 and 38 are not true derivatives, because
the function displayed in Figure 11 is a discrete func-
tion, n being an integer number so that d only represents
a variation whose lowest value is 1. However, Equation
38 tells us that the limit efficiency, represented by the
reversible and infinite stack, is approached asymptoti-
cally.
A large portion of the real fuel cell stacks are not

exactly Chain Flow or Separate Flow stacks, but are, in
general, a combination of both, as shown in the scheme
of Figure 12. A main feeding stream is divided among
the cells and all the outlet streams are recollected in one
main stream (case AB in Figure 12). In some circum-
stances a behavior of Chain or Separate stacks would
predominate. As suggested by Figure 10, Chain behav-

ior must be thermodynamically favored at high utiliza-
tions, because higher power efficiency means lower
Gibbs free energy (Figure 13). A transition from one
dominant behavior to the other may be possible, as
schematically indicated by the bold arrow in Figure 13.
If the reaction extent of the stack is increased, gases
would probably follow a flow rates profile such as the
one shown in Figure 2, where a gradient of reagent flow
rates is present along the stack.

6. Conclusions

The definition of efficiency, based on operative param-
eters for steady states, leads to a time-independent
efficiency definition, where reversible or irreversible
Gibbs free energy change appears in the numerator,
and reversible enthalpy of reaction in the denominator
(Equation 28).
The use of such a definition implies that the potential

and reaction extent of each cell of a stack can be
predicted. The capacity to predict electrical behavior of
stacks, made by identical cells, depends essentially on
the model used for the polarization curve of a single cell
and the chosen variables. The dimensionless reaction
extent is a suitable variable to correlate potential
variation with cell number, and to be used in thermo-
dynamics. The chosen model for the proposed polari-
zation curve was developed by Kim et al. [9], where a
term was added to take in account the drop of partial
pressures along the stack. The highest efficiency resulted
in a reversible Chain Flow infinite stack (Equation 19),
whose reaction rate tends to be null. The Chain Flow
case allows the achievement of higher efficiencies, which
increases with total number of cells n, although cell and
average potentials decrease (Figures 7 and 8). The
efficiency, at a fixed stack reaction extent, rises with
the total stack number of cells n, but each new equal
increment of efficiency needs more cells to be carried
out, i.e. to reach the reversible limit, an infinite number
of cells will be necessary (Figure 11). On the other hand,
a rigorous Separate Flow does follow the efficiency of
single cells (Figure 9). Stacks usually have a combina-
tion of Chain and Separate Flow behavior (Figure 12),
meaning that a large stack with many cells will be more
efficient of a small stack, and that ‘Chain behavior’ is
thermodynamically favored overall at high stack utili-
zations (Figure 13).
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